Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB

نویسندگان

  • Helga Fernández-Llamosas
  • Laura Castro
  • María Luisa Blázquez
  • Eduardo Díaz
  • Manuel Carmona
چکیده

BACKGROUND Different bacteria have been reported so far that link selenite resistance to the production of metallic selenium nanoparticles (SeNPs). Although SeNPs have many biotechnological applications in diverse areas, the molecular mechanisms involved in their microbial genesis are not fully understood. The Azoarcus genus is a physiologically versatile group of beta-proteobacteria of great environmental relevance. Azoarcus sp. CIB is a facultative anaerobe that combines the ability to degrade under aerobic and/or anaerobic conditions a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, with an endophytic life style in the root of rice. We unravel here an additional physiological feature of the strain CIB that is related to its resistance to selenium oxyanions and the formation of SeNPs. RESULTS This work is the first report of a member of the Azoarcus genus that is able to anaerobically grow in the presence of selenite. Electron microscopy preparations and X-ray spectroscopy analyses demonstrate the reduction of selenite to spherical electron-dense SeNPs whose average size was 123 ± 35 nm of diameter. Our data suggest that the main molecular mechanism of selenite resistance resides on an energy-dependent selenite exporter. Azoarcus cells trigger the synthesis of SeNPs when they reach the stationary-phase of growth, and either the exhaustion of electron donor or acceptor, both of which lead to starvation conditions, produce the reduction of selenite to red elemental selenium. Azoarcus becomes a promising biocatalyst, either as whole cells or cellular extracts, for the anaerobic and/or aerobic green synthesis of SeNPs. CONCLUSIONS Azoarcus turns out to be a new eco-friendly system to reduce selenite and produce spherical SeNPs. Moreover, this is the first report of a rice endophyte able to produce SeNPs. Since Azoarcus is also able to degrade both aerobically and anaerobically toxic aromatic compounds of great environmental concern, it becomes a suitable candidate for a more sustainable agricultural practice and for bioremediation strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

BACKGROUND Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited her...

متن کامل

Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features.

The genomic features of Azoarcus sp. CIB reflect its most distinguishing phenotypes as a diazotroph, facultative anaerobe, capable of degrading either aerobically and/or anaerobically a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, as well as its endophytic lifestyle. The analyses of its genome have expanded the catabolic potential of strain C...

متن کامل

The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB.

We report here that the bzd genes for anaerobic benzoate degradation in Azoarcus sp. strain CIB are organized as two transcriptional units, i.e., a benzoate-inducible catabolic operon, bzdNOPQMSTUVWXYZA, and a gene, bzdR, encoding a putative transcriptional regulator. The last gene of the catabolic operon, bzdA, has been expressed in Escherichia coli and encodes the benzoate-coenzyme A (CoA) li...

متن کامل

Biosynthesis of silver and selenium nanoparticles by Bacillus sp. JAPSK2 and evaluation of antimicrobial activity

The main aim of the present work was to evaluate the antibacterial activity of selenium and silver biogenic nanoparticles and further characterize them. The bacterial colony isolated from coal mine sample was found to reduce selenium and silver ions to their elemental forms respectively. Under experimental conditions, the isolated bacterium was capable of synthesising these nanoparticles which ...

متن کامل

AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB.

Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016